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Abstract

The highly enantioselective synthesis of 2,2-difluoro-3-hydroxycarboxylates has been achieved by
hydrogenating 2,2-difluoro-3-oxocarboxylates in the presence of chiral rhodium-(amidephosphine-phos-
phinite) complexes. Ethyl 4,4 4-trifluoroacetoacetate can be successfully transformed into the enantiomer-
ically enriched 4,4,4-trifluoro-3-hydroxybutanoate in the same manner. © 2000 Elsevier Science Ltd. All
rights reserved.
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The catalytic asymmetric synthesis of chiral fluoroorganic compounds has played an impor-
tant role in the development of medicines and materials based on the influence of fluorine’s
unique properties.! Fluorine, due to its high electronegativity, has a considerable electronic
effect on its neighboring groups in a molecule. The introduction of a difluoromethylene residue
into bioactive peptides has led to the discovery of potent protease inhibitors mimicking the
transition state for hydrolytic amide bond cleavage,” and optically active 2,2-difluoro-3-hydroxy-
carboxylates are versatile intermediates for the synthesis of these fluorinated peptides. We have
previously reported the enantioselective aldol reaction of a difluoroketene silyl acetal catalyzed
by chiral Lewis acids to provide 2,2-difluoro-3-hydroxycarboxylates with high enantiomeric
excesses.” However, this transformation has a drawback such that the decrease in the amount of
the catalyst to less than 20 mol% dramatically suppresses the enantioselectivity. This paper
discloses herein the catalytic asymmetric hydrogenation of 2,2-difluoro-3-oxocarboxylates (1)
catalyzed by less than 1 mol% chiral rhodium-(amidephosphine-phosphinite) complexes to
provide the corresponding 2,2-difluoro-3-hydroxycarboxylates (2) with high enantioselectivity.
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The B-keto ester 1 was prepared using the method developed by Hosomi and collaborators.*
Difluoroketene silyl acetal 3 was treated with acyl halide in the presence of CuCl in 1,3-
dimethyl-2-imidazolidinone (DMI) at 50°C for 30 min to give the B-keto ester 1 in a yield that
ranged between 54 and 90% (Scheme 1).
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| . E OSiMe3 CuCl (1.11 equiv.) M
ReoC ,:i :OEt DMI, 50 °C, 30 min R OEt

3 (1.11 equiv.) 54-90% yield 1

Scheme 1. Preparation of ethyl 2,2-difluoro-3-oxocarboxylate (1)

First, the asymmetric hydrogenation reactions of ethyl 3-cyclohexyl-2,2-difluoro-3-oxo-
propanoate (la) and ethyl 2,2-difluoro-3-oxododecanoate (1b), chosen as the model substrates,
were carried out using chiral ruthenium and rhodium complexes in order to examine their ability
as chiral catalysts (Table 1). A variety of efficient homogeneous transition metal catalysts have
been developed for the enantioselective hydrogenation of B-keto esters,” and halogen-containing
BINAP-Ru(Il) complexes are the most useful catalysts for various B-keto esters.® However, the
hydrogenation of the B-keto ester 1a using a 0.1 mol% RuBr,((R)-binap) (4)” in EtOH under 100
atm H, at 100°C for 24 h afforded ethyl (R)-3-cyclohexyl-2,2-difluoro-3-hydroxypropanoate (2a)
with only 77% ee (entry 1). A 1.0 mol% cationic ruthenium catalyst, [RuCI((R)-biphemp)(p-
cymene)]Cl (5),® also gave an unsatisfactory enantioselection during the hydrogenation of the
B-keto ester 1b under similar conditions (entry 2, 81% ee).”!° A series of amidephosphine-phos-
phinites derived from homochiral 5-(hydroxymethyl)-2-pyrrolidinone have shown to be highly
effective ligands for the rhodium-catalyzed enantioselective hydrogenation reactions of 2-oxo-
3,3-dimethyl-y-butyrolactone and o-keto amides.!" We have found that the rhodium-
(amidephosphine-phosphinite) catalysts give the B-hydroxy ester 2 with high enantioselectivity
during the hydrogenation of the B-keto ester 1.2 The hydrogenation of 1a using 0.5 mol%
[Rh((S)-Cy,Cy-0xoProNOP)OCOCF;], (6)'' was conducted in toluene under 20 atm H, at 70°C
for 20 h to afford the (R)-B-hydroxy ester 2a in 94% ee and 81% yield (entry 3). The use of 0.1
mol% [Rh((S)-Cp,Cp-0xoProNOP)OCOCF;], (7)!'¢ under the same conditions improved the
hydrogenation rate without decreasing the enantioselectivity (entry 4, 99% yield and 94% ee).
The reaction of 1b using 0.1 mol% of catalyst 6 was carried out under 20 atm H, at 30°C for
20 h to provide ethyl (R)-2,2-difluoro-3-hydroxydodecanoate (2b) with 97% ee in 98% yield
(entry 5). The use of 0.5 mol% [Rh((S)-Cy,Cy-0xoProNOP)CI], (8) in which the trifluoroacetoxy
moiety of catalyst 6 was replaced with a chloride suppressed both the chemical and optical yields
(entry 6, 43% vyield and 90% ee). Newly prepared -catalysts, [Rh((S)-C7,C7-0xo0-
ProNOP)OCOCF;], (9)"* and [Rh((S)-i-Pr,i-Pr-oxoProNOP)OCOCF;], (10),"* also gave excel-
lent optical yields although catalyst 9 showed a slightly lower chemical yield (entries 7 and 8).

Table 2 summarizes the results obtained from the hydrogenation of a variety of B-keto esters
lc-h using 0.5 mol% of catalyst 6 in toluene under 20 atm H, at 30 or 70°C for 20 h. The
hydrogenation reaction of ethyl 2,2-difluoro-3-oxobutanoate (1¢) proceeded smoothly at 30°C to
give the corresponding (R)-product 2¢ with 96% ee in 93% yield (entry 1). A B-keto ester having
a branched alkyl group R (1d) was hydrogenated using catalyst 4 at 70°C to afford the
(R)-product 2d with an enantiomeric excess of 92% in 95% yield (entry 2). Ethyl 2,2-difluoro-3-
oxo-3-phenylpropanoate (le) gave a poor enantioselectivity (entry 3, 84% ee). The hydrogena-
tion of ethyl 2,2-difluoro-3-oxo0-4-phenylbutanoate (1f) was carried out with an excellent level of



Table 1
Enantioselective hydrogenation reactions of ethyl 2,2-difluoro-3-oxocarboxylates (1a and 1b) in the presence of chiral ruthenium and rhodium

complexes
0o O OH O
RMOB catalyst, By RMOEt
£ E solvent e
1 2
Entry  B-Keto ester 1 Catalyst* (mol%) H, (atm) Solvent Temp. (°C) Time (h) Product 2
R Yield (%)®  ee (%)° (config.)!
1 ¢-C¢Hy, (1a) 4 (0.1) 100 EtOH 100 24 96 77 (R) (2a)
2 CH,;(CH,), (1b) 5(1.0) 100 EtOH 100 5 100 81 (R) (2b)
3 ¢-C¢Hy, (1a) 6 (0.5) 20 Toluene 70 20 81 94 (R) (2a)
4 ¢-C¢Hy, (1a) 7 (0.1) 20 Toluene 70 20 99 94 (R) (2a)
5 CH,;(CH,)y (1b) 6 (0.1) 20 Toluene 30 20 98 97 (R) (2b)
6 CH;(CH,)y (1b) 8 (0.5) 50 Toluene 30 18 43 90 (R) (2b)
7 CH,(CH,), (1b) 9 (0.1) 10 Toluene 30 20 80 96 (R) (2b)
8 CH,;(CH,)y (1b) 10 (0.1) 10 Toluene 30 20 99 97 (R) (2b)

24: RuBr,[(R)-binap], 5: [RuCIl((R)-biphemp)(p-cymene)]Cl, 6: [Rh((S)-Cy,Cy-0xoProNOP)OCOCF;],, 7: [Rh((S)-Cp,Cp-0xoProNOP)OCOCF;],,
8: [Rh((S)-Cy,Cy-0xoProNOP)Cl],, 9: [Rh((S)-C7,C7-0xoProNOP)OCOCF;],, 10: [Rh((S)-i-Pr,i-Pr-oxoProNOP)OCOCF;],.

®Isolated yield.

¢ Determined by HPLC using a chiral column (CHIRALCEL® OD-H, Daicel Chemical Industries, Ltd.).

4 The absolute configuration was assigned using the modified Mosher method. See reference 14.
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Table 2
Enantioselective hydrogenation of various B-keto esters le-h catalyzed by chiral rhodium complex 6
O O OH O
[Rh((S)-Cy,Cy-0x0ProNOP)(OCOGF3)] (6) (0.5 mol%) )§(IL
RMOEI R OFEt
e H» (20 atm), toluene, 20 h e
1 2
Entry B-Keto ester 1 Temp. (°C) Product 2
R Yield (%)? Ee (%)® (config.)
1 CH, (1¢) 30 93 96 (R)° (2¢)
2 (CH;),CHCH, (1d) 70 95 92 (R)° (2d)
3 Ph (1e) 30 97 84 (R)! (2¢)
4 PhCH, (1f) 30 63 94 (R)° (2f)
5 PhCH,CH, (1g) 30 100 96 (R)° (2g)
6 PhCH,OCH, (1h) 30 95 95 (R)° (2h)

2 Isolated yield.

® Determined by HPLC using a chiral column (CHIRALCEL® OD-H or OB-H, Daicel Chemical Industries, Ltd.).

¢ The absolute configuration was assigned using the modified Mosher method. See reference 14.

4 The B-hydroxy ester 2e was shown to have the (R)-configuration by conversion to the known corresponding
methyl ester. See reference 15.

enantioselectivity although the chemical yield was not very good (entry 4, 94% ee and 63%
yield). Two B-keto esters, 1g and 1h, bearing a phenyl moiety, were hydrogenated at 30°C and
gave the corresponding products in excellent chemical and optical yields (entries 5 and 6). In all
cases, the rhodium-((S)-amidephosphine-phosphinite) complexes gave predominantly the (R)-
enantiomers (Table 1, entries 3-8 and Table 2).

Finally, the asymmetric hydrogenation of ethyl 4,4,4-trifluoroacetoacetate (11) using 0.5 mol%
of catalyst 6 was examined in toluene under 20 atm H, at 70°C for 20 h, and ethyl
(R)-4,4,4-trifluoro-3-hydroxybutanoate (12) was obtained in 91% ee and 92% yield (Scheme 2).'¢

o o OH O

[Rh((S)-Cy,Cy-0xoProNOP)(OCOCFs3)], (6) (0.5 mol%) -
FchOEt F3C/(R)\)J\0Et

H, (20 atm), toluene, 70 °C, 20 h
11 12

92% yield, 91% ee

Scheme 2. Enantioselective hydrogenation of ethyl 4,4,4-trifluoroacetoacetate (11) catalyzed by 6

The enantioface differentiation cannot be simply explained by the coordination of the
rhodium atom with two carbonyl oxygens of the B-keto ester (1 and 11). Interestingly, the
2,2-difluoro-3-oxocarboxylate 1 is hydrogenated on the under surface (a-side), while the reaction
of the 4,4 4-trifluoroacetoacetate 11 occurs on the upper surface (p-side), suggesting that the
fluorine atoms exert a pronounced influence on the enantiotopic face selection (Fig. 1).!”

In conclusion, we have described the highly enantioselective hydrogenation of 2,2-difluoro-3-
oxocarboxylates mediated by chiral rhodium-(amidephosphine-phosphinite) catalysts. Ethyl
4,4 4-trifluoro-3-hydroxybutanoate of 91% ee was obtained from the 4,4,4-trifluoroacetoacetate
in the same manner. The origin of the enantiofacial selection and application of this method to
the synthesis of versatile chiral fluorinated molecules is currently under investigation.
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Figure 1. Stereochemical course of the hydrogenation catalyzed by 6

General procedure for the 2,2-difluoro-3-hydroxycarboxylates. Toluene was distilled from
sodium ketyl. A solution of [Rh(COD)OCOCF;], (6.5 mg, 0.01 mmol) and (S)-Cy,Cy-oxo-
ProNOP (11.2 mg, 0.022 mmol) in toluene (1 mL) was stirred for 15 min in a glove box. The
resulting catalyst solution (150 pL) was transferred to a 100 mL stainless steel autoclave. A
solution of the 2,2-difluoro-3-hydroxycarboxylate (3.0 mmol) in toluene (4 mL) was transferred
to the autoclave, hydrogen (20 atm) was introduced, and the reaction mixture was stirred
magnetically at 30 or 70°C. After the desired reaction time, hydrogen was removed and the
solution was concentrated in vacuo. The crude residue was analyzed by GLC and chro-
matographed to furnish the hydrogenation product.
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